STABILITY OF REEB GRAPHS UNDER FUNCTION PERTURBATIONS: THE
CASE OF CLOSED CURVES

B. DI FABIO AND C. LANDI

ABSTRACT. Reeb graphs provide a method for studying the shape of a nicbijoen-
coding the evolution and arrangement of level sets of a simmgles#function defined on
the manifold. Since their introduction in computer graphhesythave been gaining pop-
ularity as an effective tool for shape analysis and matchinghis context one question
deserving attention is whether Reeb graphs are robustsidairction perturbations. Fo-
cusing on 1-dimensional manifolds, we define an editing dcgtdretween Reeb graphs of
curves, in terms of the cost necessary to transform one gnéplanother. Our main result
is that changes in Morse functions induce smaller changémiediting distance between
Reeb graphs of curves, implying stability of Reeb graphs uhdetion perturbations.

INTRODUCTION

The shape similarity problem has since long been studietidogamputer vision com-
munity for dealing with shape classification and retrieealks. It is now attracting more
and more attention also in the computer graphics commurtigra/recent improvements
in object acquisition and construction of digital models &ading to an increasing ac-
cumulation of models in large databases of shapes. Companis2D images is often
dealt with considering just the silhouette or contour cuf/éhe studied object, encoding
shape properties, such as curvature, in compact repréisestaf shapes, namely, shape
descriptors, for the comparison. The same approach is nmafenare used also in com-
puter graphics where there has been a gradual shift of @saderests from methods of
representing shapes toward methods of describing shaj3&s mbdels.

Since [24], Reeb graphs have been gaining popularity adectigé tool for shape anal-
ysis and description tasks as a consequence of their atailiéxtract high-level features
from 3D models. Reeb graphs were originally defined by GeoRgeb in 1946 as topo-
logical constructs [22]. Given a manifoldZ and a generic enough real-valued function
f defined on#, the simplicial complex defined by Reeb, conventionallyezhthe Reeb
graph of(.# , T), is the quotient space defined by the equivalence relatatridantifies the
points of.# belonging to the same connected component of level sefts Beeb graphs
effectively code shapes, both from a topological and a gédcaéperspective. While the
topology is described by the connectivity of the graph, teergetry can be coded in a va-
riety of different ways, according to the type of applicaidhe Reeb graph is devised for,
simply by changing the functiof. Different choices of the function yield insights into the
manifold from different perspectives. The compactnessefane-dimensional structure,
the natural link between the function and the shape, anddksilgility of adopting differ-
ent functions for describing different aspects of shapédmposing the desired invariance
properties, have led to a great interest in the use of Regihgifar similarity evaluation. In
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[15], Hilagaet al. use Multiresolution Reeb Graphs based on the distributi@eodesic
distance between two points as a search key for 3D objectlsthensimilarity measure
constructed in this setting is found to be resistant to ndisehis approach resistance to
changes caused by noise essentially relies on the choite gfetodesic distance to build
the Reeb graph. In [4], Biasottt al. base the comparison of Extended Reeb Graphs on
a relaxed version of the notion of best common subgraph. dpysoach gives a method
for partial shape-matching able to recognize sub-partbjafots, and can be adapted to the
context of applications since there is no requirement orctioéce of the functiorf. Both
[15] and [4] present algorithms for similarity evaluation.

To the best of our knowledge, mathematical assessment hifitstaagainst function
perturbations is still an open issue as far as Reeb graphsoamerned. This question
deserves attention since it is clear that any data acaquisgtisubject to perturbations, noise
and approximation errors and, if Reeb graphs were not stétdga distinct computational
investigations of the same object could produce complatifgrent results. This paper
aims to be possibly the first positive answer to this question

We confine ourselves to consider Reeb graphs of curves. drsétting Reeb graphs
are simply cycle graphs with an even number of vertices spording alternatively to the
maxima and minima of the function. We also equip verticesedliRgraphs with the value
taken by the function at the corresponding critical points.

Our main contribution is the construction of a distance leetwReeb graphs of curves
such that changes in functions imply smaller changes inigiartte. Our distance is based
on an adaptation of the well-known notion of editing diseubetween graphs [25]. We
introduce three basic types of editing operations, repitesein Table 1, corresponding to
the insertion (birth) of a new pair of adjacent points of nmaxim and minimum, the dele-
tion (death) of such a pair, and the relabelling of the vericA cost is associated with
each of these operations and our distance is given by theunfiof the costs necessary
to transform a graph into another by using these editingadjmers. Our main result is the
global stability of labelled Reeb graphs under functiortymyations (Theorem 6.3):

MAIN RESULT. Let f,g: S' — R be two simple Morse functions. Then the editing distance
between the labelled Reeb graph(8f, f) and that of(S', g) is always smaller or equal to
the C-norm of f—g.

The main idea of the proof is to read editing operations imgeof degenerate strata
crossings of the space of smooth functions stratified as]in fée also obtain a lower
bound for our editing distance. Indeed, we find that it candterated from below by the
natural pseudo-distance between closed curves studié@jin [

The paper is organized as follows. In Section 1, we reviewesofrthe standard facts
about Morse functions, th@" topology, the theory of stratification of smooth real valued
functions, and Reeb graphs. Section 2 deals with basic giepef labelled Reeb graphs
of closed curves. Section 3 is devoted to the definition ofatmissible deformations
transforming a Reeb graph into another, the cost assoaiatie@ach kind of deformation,
and the definition of an editing distance in terms of this cdéction 4 is intended to
provide a suitable lower bound for our distance, the napsalido-distance; this represents
a useful tool both to show the well-definiteness of our distaand to compute it in some
simple cases. In Sections 5 and 6 it is shown that our distiartzath locally and globally
upper bounded by the difference, measured ircth@orm, between the functions defined
onSt. Eventually, a brief discussion on the results obtainedkmtes the paper.
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1. PRELIMINARY NOTIONS

In this section we recall some basic definitions and resiitsiaMorse functions and
Reeb graphs. Moreover, with the aim of proving stability @eR graphs under function
perturbations in mind, we recall some concepts concerhi@agpace of smooth real valued
functions on a smooth manifold: ti2 topology and the theory of the natural stratification.

Throughout the paper# denotes a smooth (i.e. differentiable of cl&% compact
n-manifold without boundary, anéf (.#,R) the set of smooth real functions o#'.

1.1. Simple Morse functions. Let us recall the following concepts from [19].
Let f € .Z(#,R). A point p€ .# is called acritical point of f if, choosing a local
coordinate systerfxy, ...,Xn) in a neighborhood) of p, it holds that

of of

o P == gk (P =0,
and it is called aegular point otherwise. Throughout the paper, welkéf) = {pe .# :
p is a critical point of f }.

If pe K(f), then the real numbefr(p) is called acritical valueof f, and the sefq €
A qe f71(f(p))} is called acritical level of f. Otherwise, ifp ¢ K(f), thenf(p) is
called aregular value Moreover, a critical poinp is callednon-degeneraté and only if
the second derivative matrix

9°f
(dxide (p)>

is non-singular, i.e. its determinant is not zero.
By the well-known Morse Lemma, in a neighborhood of a nonetiegate critical point
p, it is possible to choose a local coordinate syst&m. . ., x,) such that

f=f(p) ... —X+Xe +...+X2

The numbek is uniquely defined for each critical poiptand is called thendexof p. Such
an index completely describes the behaviolf @t p. For examplek = 0 means that the
corresponding is a minimum forf; k= n means thap is a maximum; O< k < n means
thatp is a saddle point fof.

Definition 1.1. Afunction f € . (.#,R) is called aMorse functiorif all its critical points
are non-degenerate. Moreover, a Morse function is said sirbpleif each critical level
contains exactly one critical point.

It is well-known that every Morse function has only finitelyany critical points (which
are therefore certainly isolated points). The importantean-degeneracy is that it is
the common situation; indeed, in a sense that will be expthim Subsection 1.3, the
occurrence of degenerate critical points is really quite.ra

1.2. The C' topology on the space of real valued functionsTo topologize.# (.# ,R),
let us recall the definition of"-norm, with 0<r < « (see, e. g., [20, 21]). LefUq}
be a finite coordinate covering o#, with coordinate maph, : Uy — R", and consider
a compact refinemerfCy } of {Uy} (i.e. Cq C Uq for eacha, and|JCy = .#). For
f € Z(,R),letus setfy = fohgz!:hy(Cy) — R. Then theC'-normof f is defined as

| fller =max{ max |fq(u)|, max
a uehg (Cq) uchg (Cq)
je{1,...,n} 15 irefl,...,n}

max

0 fy
ouj, ---0uj,

)
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The above norm defines a topology oh(.#,R), known as theC" topology (or weak
topology), with 0 <r < o (cf. [16, chap. 2]). In the following, we will denote B¢ (f,d),
0 <r < oo, the open ball with centef and radiusd in theC' topology, i.e.,g € B(f,9)
if and only if || f — g||r < 6. TheC® topologyis simply the union of th€" topologies on
F (M ,R) for every 0<r < oo,

1.3. Natural stratification of the space of real valued functions Letus endowZ (.#,R)
with the C* topology, and consider thaeatural stratificationof such a space, as exposed
by Cerf in [6] (see also [23]). The natural stratification &fided as a sequence of sub-
manifolds of.# (.#,R), #°,.#%,...,.#},..., of co-dimension O1,..., j,..., respectively,
that constitute a partition of (.#,R), and such that the disjoint unigh®u.Z1uU...U.Z1
is open for everyj.

Before providing a brief description of the strata, let usatethe following equivalence
relation that can be defined of(.#,R).

Definition 1.2. Two functionsf,g € % (.#,R) are calledopologically equivalenif there
exists a diffeomorphisng : .# — .# and an orientation preserving diffeomorphigm
R — R such thag(&(p)) = n(f(p)) for everype 4.

The above relation is also known i@stopyin [6], andleft-right equivalencen [3].
Let us describeZ? and.Z?1, pointing out their main properties that allow us to leave
aside the remaining strata.

e The stratum#? is the set of simple Morse functions.
e The stratumZ1 is the disjoint union of two sets} andfé open inZ1, where

— 7} is the set of functions whose critical levels contain exaotie critical
point, and the critical points are all non-degenerate, gixegactly one. In
a neighborhood of such a point, spya local coordinate systefwy, ..., Xn)
can be chosen such that

f=f(p) - X+ .+ +X

- 3?5 is the set of Morse functions whose critical levels contaimast one
critical point, except for one level containing exactly teritical points.

70 is dense in the spac& (.#,R) endowed with theC" topology, 2< r < o (cf.
[16, chap. 6, Thm. 1.2]). Therefore, any smooth function barturned into a simple
Morse function by arbitrarily small perturbations. Degete critical points can be split
into several non-degenerate singularities, with all défe critical values (Figure 1a)).
Moreover, when more than one critical points occur at theeskawvel, they can be moved
to close but different levels (Figure(b)).

It is well-known that two simple Morse functions are topdtadly equivalent if and
only if they belong to the same arcwise connected compomerb¢celluld of .#° [6, p.
25].

Z1is a sub-manifold of co-dimension 1 gf°U.#1, and the complement oF°U.#1
in .Z is of co-dimension greater than 1. Consequently, given twmationsf,g € .Z°, we
can always finde,Q € .Z (. ,R) arbitrarily near tof g, respectively, for which the path
h(A) = (1—A)f+Ag, with A € [0,1], is such that

Q) fA, ge .#° and f, g are topologically equivalent tb, g, respectively;
(2) h(A) belongs to#°U.Z1 for everyA € [0,1];
(3) h(A) is transversal ta7 1.



STABILITY OF REEB GRAPHS UNDER FUNCTION PERTURBATIONS: THE CASBF CLOSED CURVES 5

f1 f f2

(b)

FIGURE 1. (a) A function f € #} admitting a degenerate critical poipt(center)
can be perturbed into a simple Morse functirwith two non-degenerate critical points
P, p’ (left), or into a simple Morse functiof, without critical points aroung (right); (b)

a functionf e 9?‘% (center) can be turned into two simple Morse functidpnst,, that are
not topologically equivalent (left-right).

As a consequench(A ) belongs toZ ! for at most a finite collection of values, and does
not traverse strata of co-dimension greater than 1 (see[B4J).

1.4. Reeb graph of a manifold. In this subsection we restate the main results concerning
Reeb graphs, starting from the following one shown by Reg@2h Here we consider
pairs(., f), with .# connected and € .#° C 7 (. ,R).

Theorem 1.3. The quotient space o# under the equivalence relation “p and g belong
to the same connected component of the same level set of ffiigte and connected
simplicial complex of dimension 1.

This simplicial complex, denoted Hys, is called theReeb graphassociated with the
pair (., f). Its vertex set will be denoted B(I" ), and its edge set k(I ). Moreover,
if vi,v» € V(I'¢) are adjacent vertices, i.e., connected by an edge, we wi# @(v1,v») €
E(lt). Since the vertices of a Reeb graph correspond in a one to anaento critical
points of f on the manifold# (see, e.g., [5, Lemma 2.1]), we will often identify each
v e V(I'¢) with the corresponding € K(f).

Given two topologically equivalent functiorfsg € .9, it is well-known that the asso-
ciated Reeb graphE; andl 4, are isomorphic graphs, i.e., there exists an edge-pliegerv
bijection® :V(I't) — V(I'y). Beyond that, an even stronger result holds. Two functions
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f,g € .#9 are topologically equivalent if and only if such a bijectidralso preserves the
vertices order, i.e., for everyw € V(I'¢), f(v) < f(w) if and only if g(P(v)) < g(P(w)).

The preceding result has been used by Arnold in [2] to chassifiple Morse functions
up to the topological equivalence relation.

2. LABELLED REEB GRAPHS OF CLOSED CURVES

This paper focuses dReeb graphsf closed curves. Hence, the manifold that will
be considered from now on &', and the functionf will be taken in.#° c .Z (S, R).
The Reeb graphi; associated witliS, f) is a cycle graph on an even number of vertices,
corresponding, alternatively, to the minima and maximé# oh St [21] (see, for example,
Figure 2(a) — (b)). Furthermore, we label the verticesof, by equipping each of them
with the value off at the corresponding critical point. We denote such a leajlaph by
(T, f), wheref :V(I't) — Ris the restriction off : St — RtoK(f). A simple example
is displayed in Figure Za) — (c). To facilitate the reader, in all figures of this paper we
shall adopt the convention of representihgs the height function, so th@t(va) < f‘ (V)
if and only if v, is lower thanv, in the picture.

J
; (S ) w T w ()
V; Vs 20
3
\) Vs
V2 Ve 3
Vi V7 v Vg
Vg Ve
(@) (b) (©)

FIGURE 2. (a) Apair (S}, f), with f the height function(b) the Reeb graph; associ-
ated with(S', f); (c) the labelled Reeb grap(f ¢, f) associated witliSt, f). Here labels
are represented by the heights of the vertices.

The natural definition of isomorphism between labelled Rgeiphs is the following
one.

Definition 2.1. We shall say that two labelled Reeb graghis, f ), (T g, 9,) areisomorphic
if there exists an edge-preserving bijecti®nV (I'1) — V(I'g) such thatf (v) = g (®(v))
for everyve V(I'y).

The following Proposition 2.4 provides a necessary andgefft condition in order

that two labelled Reeb graphs are isomorphic. It is basechemeéxt definition of re-
parameterization equivalent functions.

Definition 2.2. Let 7#(S') be the set of homeomorphisms 8h We shall say that two
functions f,g € .7% ¢ .Z (S',R) are re-parameterization equivalerit there existst €
2 (SY) such thatf (p) = g(t(p)) for everyp € S.

Lemma 2.3. Let(I's, f ) and (I'g,g‘) be labelled Reeb graphs associated wigh, f) and
(S',9), respectively. If an edge-preserving bijection V (I'¢) — V([y) exists, then there
also exists a piecewise linearc .7 (S) such thatr‘v(m = ®. If moreover f=g o®,
then f=goT.
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Proof. The proof of the first statement is inspired by [13, Lemma.4L3t us construct
T by extending® to S' as follows. Let us recall that(I'+) = K(f) andV(Ig) = K(g),
and, by abuse of notation, for every pair of adjacent vestigep” € V(T'¢), let us iden-
tify the edgee(p/, p’) € E(T'¢) with the arc ofS' having endpointg’ and p”, and not
containing any other critical point of. For everyp € K(f), let 1(p) = ®(p). Now,
let us definer(p) for everyp € St\ K(f). Givenp € St\ K(f), we observe that there
always existp’, p” € V(I'1) such thatp € e(p/, p”’). Since® is edge-preserving, there ex-
istse(®(p'), P(p”)) =e(t(p'),7(p")) € E(Tg). Hence, we can defingp) as the unique
pointofe(t(p’), T(p”)) such that, iff (p) = (1—Ap) f(p') +Apf(P”), with A, € [0, 1], then
9(t(p)) = (1—Ap)g(t(p)) +Apg(t(p")). Clearly, T belongs tos#’(S') and is piecewise
linear.

As for the second statement, it is sufficient to observe thdt,= g o @, sincet(p) =
@(p) for everyp € K(f), then clearlyf (p) = g (7(p)) for everyp € K(f). Moreover, for
everyp € St\ K(f), by the construction of, it holds thatg(t(p)) = (1 - Ap)g(®(p)) +
Apg(P(p”)) = (1—2Ap) F(P) +Apf(p”) = f(p). In conclusion,f(p) = g(1(p)) for every
p € St, and, hencef, g are re-parameterization equivalent.

[

Proposition 2.4 (Uniqueness theorem).et (I'¢, f), (Fg,g‘) be labelled Reeb graphs as-
sociated with S, f) and (S, g), respectively. The(T ¢, f ) is isomorphic talg,g ) if and
only if f and g are re-parameterization equivalent.

Proof. The direct statement is a trivial consequence of Lemma 2.3.

As for the converse statement, it is sufficient to observeahgt € (S such that
f =gor, as well as its inversg 1, takes the minima of to the minima ofg and the
maxima off to the maxima ofj. Hence ®:V(I's) — V([g), with ® = Ty is an edge

preserving bijection such theﬁ{[: go d. |

As a consequence of Proposition 2.4, two labelled Reeb griapmorphic in the sense
of Definition 2.1 will always be identified, and in such casewisimply write (I¢, f) =
(rg7g\ )

The following Proposition 2.5 ensures that, for every cygiiaph with an appropriate
vertices labelling, there exists a unique (up to re-pararnggtion) pair(St, f), with f €
Z0, having such a graph as the associated labelled Reeb graph.

Proposition 2.5(Realization theorem)Let (G, ) be a labelled graph, where G is a cycle
graph on an even number of vertices, ad/(G) — R is an injective function such that,
for any vertex y adjacent (that is connected by an edge) to the vertigesnd 5, either
both¢(v1) and¢(v3) are smaller thar/(v»), or both¢(v;) and¢(vs3) are greater tharf(vy).
Then there exists a simple Morse functiondt — R such that(T" ¢, fr) = (G,0).
Proof. It is evident. O

By virtue of the above Uniqueness and Realization theor&@rappsitions 2.4 and 2.5),
for conciseness, when a labelled Reeb graph will be intredircthe sequel, the associated
pair will be often omitted.

3. EDITING DISTANCE BETWEEN LABELLED REEB GRAPHS

We now define the editing deformations admissible to transfa labelled Reeb graph
of a closed curve into another. We introduce at first elemgmteformations and then the



8 B. DI FABIO AND C. LANDI

deformations obtained by their composition. Next, we aisge@ cost with each type of
deformation, and define a distance between labelled Repbgma terms of such a cost.

Definition 3.1. Let (I'y, f‘) be a labelled Reeb graph witm 2ertices,n > 1. We call an
elementary deformatioof (T, f‘) any of the following transformations:

(B) (Birth): Assumee(vy,vz) € E(I'1) with f (vi) < f(v2). Then(ls,f ) is trans-
formed into a labelled grapfG, ¢) according to the following ruleG is the new
graph on 2+ 2 vertices, obtained deleting the ed#e;, v») and inserting two new
verticesus, Uz and the edges(vi, Uy ), e(ug, U2), e(uz, v2); moreover/:V(G) — R
is defined by extending fromV(I't) toV(G) =V (I't) U{uz, U} in such a way
thatlyy(r() = f, andf (v1) < £(uz) <£(u1) < f (v2).

(D) (Death): Assumer > 2, ande(va,u1), (U1, Uz),&(Uz,V2) € E(T't), with f (v1) <
f (Uz2) < f (ur) < f (v2). Then(I't, f ) is transformed into a labelled gragB, ¢)
according to the following ruleG is the new graph onr?— 2 vertices, obtained
deletingus, uy and the edges(vi,u;), e(us,Uy), e(up,v2), and inserting an edge
e(va,V2); moreover,l :V(G) — R is defined as the restriction df to V(I's) \
{uz,uz}.

(R) (Relabelling):(T's, f ) is transformed into a labelled grag6, ¢) according to the
following rule: G =T, and for any vertex, adjacent to the verticeg andvs
(possiblyv; = v3 for n= 1), if both f‘ (v1) and f‘ (v3) are smaller (greater, respec-
tively) than f (v2), then both¢(v1) and ¢(v3) are smaller (greater, respectively)
than{(v,); moreover, for every # w, ¢(v) # £(w).

We shall denote by (T, f‘) the result of the elementary deformatidrapplied to(l' ¢, f ).

Table 1 schematically illustrates the elementary defoionatdescribed in Definition
3.1

Proposition 3.2. Let T be an elementary deformation(6%, f ), and let(G,£) =T (1, f ).
Then(G,¢) is a Reeb grapmrg,g‘) associated with a pai(St,g), and ge .#0 is unique
up to re-parameterization equivalence.

Proof. The claim follows from Propositions 2.5 and 2.4. O

As a consequence of the above result, from now on, we willctlirevrite T ("¢, f ) =

(rgvg )

M(‘)reover, since the previous Proposition 3.2 shows thatl@ementary deformation
of a labelled Reeb graph is still a labelled Reeb graph, weatsm apply elementary
deformations iteratively. This fact is used in the next Di&fin 3.3.

Given an elementary deformatioh of (I't, f ) and an elementary deformati@of

T(T¢, f‘), the juxtapositiorST means applying first and therS.

Definition 3.3. We shall calldeformationof (I's, fl) any finite ordered sequende =
(T2, To,..., T;) of elementary deformations such thatis an elementary deformation of
(Cs, fl), T, is an elementary deformation ®f(I" 1, fl), ..., It is an elementary deformation

of Tr—1Tr—2---Ta(F'¢, f ). We shall denote by (I's, f ) the result of the deformatiof
applied to(l's, f)).

Let us define the cost of a deformation.

Definition 3.4. Let T be an elementary deformation transformiiig, f ) into (g, ).
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V2 V2
U1
(B)
—_—
uz2
Vi V1
V2 V2
Ui
(D)
—
uz
V1 V1
\ Ve
Ve
Vg Vg
V2 g R) w Vs,
V3
Vg Vs
V7 Vi
V]_ V7

TABLE 1. The upper two figures schematically show the elementary defimsaof
type (B) and (D), respectively; the third figure shows an exarnpelementary deforma-
tion of type (R).

If T is of type (B) inserting the verticas, u, € V(I'g), then we define the associ-
ated cost as

g, (up) — g, (u2)|

-

If T is of type (D) deleting the verticas,u, € V(I'¢), then we define the associ-
ated cost as

c(T) =

£ (ug) — f ()|
-

If T is of type (R) relabelling the verticasc V(') =V (Ig), then we define the
associated cost as

o(T) =

o(T) = max () ~g ().
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Moreover, if T = (Ty,...,Ty) is a deformation such thak ---Ta(Ft, ) = (Mg, g), we
r

define the associated cost&d3 ) =  c(Ti).
i=1

We now introduce the concept of inverse deformation.

Definition 3.5. Let T be a deformation such tha{(I", f ) = (I'g,g). Then we denote by
T-1, and call it theinverseof T, the deformation such thaTl(Fg,g‘) = (I1, f) defined
as follows:
e If T is elementary of type (B) inserting two vertices, then? is of type (D)
deleting the same vertices;
e If T is elementary of type (D) deleting two vertices, thent is of type (B) insert-
ing the same vertices, with the same labels;
o If T is elementary of type (R) relabelling vertices\ofl" ¢ ), thenT ~* is again of
type (R) relabelling these vertices in the inverse way;
o If T=(Ty,...,T), thenT 1= (T, %,..., T, ).

Proposition 3.6. For every deformation T such tha{ITs, f‘) = (Fg,g‘), c(T™H =¢(T).
Proof. Trivial. O

We prove that, for every two labelled Reeb graphs, a finite ramof elementary de-
formations always allows us to transform any of them intodtteer one. We recall that
we identify labelled Reeb graphs that are isomorphic adogrh Definition 2.1. We first
need a lemma, stating that in any labelled Reeb graph witbaat four vertices we can
find two adjacent vertices that can be deleted.

Lemma 3.7. Let (T, f‘) be a labelled Reeb graph with at least four vertices. Therethe
exist vy, U1 ), e(U, Uz), &(Uz, v2) € E(Mr), with £ (v1) < f (uz) < f (u) < f (v2).

Proof. LetV(I'¢) = {ao,bo,a1,b1,...am-1,bm-1}, m> 2. In the following, we convene
that, fork € Z, ax andby are equal t@k modm andbk modm), respectively. We assume
thatE(T"¢) = {e(ai,bi) : 1 = 0} U{e(bi,ai+1) 11 > O}, andf (&) < f (by) for everyi. From
the definition of labelled Reeb graph associated with a (&irf), it follows thatf, (bi) >
(@), T (@) # T (@), T (bi) # T (i), for everyi.

The claim can be restated saying that there is at least om irglich that eithe(l)
f‘(ai-) < f‘ (a4+1) and f|(bi) < f‘(bi+1) or (I f| (a41) < f‘ (&) and f‘(bi) < f‘(bi_l) hold.
We prove this statement by contradiction, assuming thaeveryi > 0 neither(l) nor
(1) hold. Since(l) does not hold, eithef (ao) > f (a1) or f (bo) > f (b1) or both. Let
us consider the case whéibo) > f (b1). Since(ll) does not hold either, it follows that
f (a2) > f (a1). Recalling tha(l) does not hold, we obtaifi(b1) > f (b2). Iterating the
same argument, we deduce tHgbi) > f (bi + 1) for everyi > 0, contradicting the fact
thatbmy, = bg. An analogous proof works when we consider the c@éab) > f‘ (). O

Proposition 3.8. Let ("1, f,) and (g, g ) be two labelled Reeb graphs. Then the set of all
the deformations T such that(ITt, f ) = (Fg,g ) is non-empty. This set of deformations
will be denoted by7 ((T'+, f‘), (Fg,g‘)).

Proof. If (I't, f) = (T'g,9), then it is sufficient to take the elementary deformaffoof
type (R) transformingl"¢, f ) into itself. Otherwise, ifT't, f ) # (Fg,g ) andl" ¢ has at least
four vertices, by Lemma 3.7, we can apply a finite sequencdeofientary deformations
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of type (D) to(T' ¢, f ), so that in the resulting labelled Reeb grdph, h ), ' has only two
vertices, say, v, with h (u) <h (v). If (Tg,g) has also at least four vertices, by Lemma
3.7, there exists a finite sequence of elementary deformsmabtbtype (D) to(rg,g‘), say
S=(S,...,S), so that in the resulting labelled Reeb gra(ﬁlw,h"), Iy has only two
vertices, say/,V, with h"(u’) < h"(\/). So, we can apply tdh,h ) an elementary defor-
mation of type (R) so to obtaifT}y, h"). Finally, by Definition 3.5, we can apply {1, h‘/)

the finite sequence of elementary inverse deformationspaf (8),S 1 = (%l, ... ,ql),

in order to obtair(rg,g‘). For (T's, f‘) or (Fg,g‘) with only two vertices, the same proof
applies without need of deformations of type (D) or (B), exdjvely. O

A simple example explaining the above proof is given in F&gBr

\/1 V4 V4 Ug

Uy Uy
V5 20 Ug Us
Ug Us
D D R B B
o \@f |Q\\ &\ |8
W v D) O
V7 v7 Us
Vi Vi Uy Uy Uy

FIGURE 3. The leftmost labelled Reeb graph is transformed into the migist one
applying first three elementary deformations of type (D), thee elementary deformation
of type (R), and finally two elementary deformations of type. (B)

We point out that the deformation constructed in the prooPadposition 3.8 is not
necessarily the cheapest one, as can be seen in Example 2.

We now introduce an editing distance between labelled Regphg, in terms of the
cost necessary to transform one graph into another.

Theorem 3.9. For every two labelled Reeb graplis;, f‘) and (Fg,g‘), we set

e, f), (I = inf T).
d((F,f),(Fg.9)) Tg«r:’r}‘)’(rg_’g‘))C( )

Then d is a distance.

The proof of the above theorem will be postponed to the entefdllowing section.
Indeed, even if the properties of symmetry and triangulegirality can be easily verified,
the property of the positive definitenessdfs not straightforward because the set of all
possible deformations transformirig, f‘) to (Fg,g‘) is not finite. In order to prove the
positive definiteness af, we will need a further result concerning the connectionvieen
the editing distance between two labelled Reeb grafihs,f ), (T'g,g), and the natural

pseudo-distance between the associated pairs), (S, ).

4. A LOWER BOUND FOR THE EDITING DISTANCE

Now we provide a suitable lower bound for our editing diseahg means of theatural
pseudo-distance

The natural pseudo-distance is a measure of the dissityilmtween two pairéX, @),
(Y, ), with X andY compact, homeomorphic topological spaces@nX — R, ¢:Y —
R continuous functions. Roughly speaking, it is defined asnfimum of the variation
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of the values of¢ and s, when we move fronX to Y through homeomorphisms (see
[11, 12, 13] for more details).

Such a lower bound is useful for achieving two different HssuThe first result, as
mentioned in the preceding section, concerns the proof ebiidgm 3.9, i.e., thad is a
distance (see Corollary 4.2). The second one is related tonarediate question that
can arise looking at the definition df Is it always possible to effectively compute the
cheapest deformation transforming a labelled Reeb graphaimother, since the number
of such deformations is not finite? By using the natural psedidtance, we can estimate
from below the value ofl, and, in certain simple cases, knowing the value of the ahtur
pseudo-distance allows us to determine the valu®(ske, e.g., Examples 1-2).

The following Theorem 4.1 states that the natural pseudtadce computed between
the pairgSt, f) and(S', g) is a lower bound for the editing distance between the aswatia
labelled Reeb graphs.

Theorem 4.1. Let (¢, f ), (Tg,9 ) be labelled Reeb graphs associated wigh, f) and

(S',g), respectively. Then(drs, f),(Fg,g)) > inf ||f —goT]co.
! | te (s

Proof. Letus prove that, for every € .7(('t, f ), (g9 ), ¢(T) = re}fsl)”f —goT||co.
First of all, assume thaf is an elementary deformation transformifigs, f‘) into
(Fg7g‘). For conciseness, slightly abusing notations, we will itgrdarcs of S' having
as endpoints two critical pointg, p” € V(I ), and not containing other critical points of
f, with the edgeg(p/, p’) € E(I'¢).
(1) LetT be of type (R) relabelling vertices & (I"¢). Since, by Definition 3.1 (R),
't = g, we can always apply Lemma 2.3, considerib@s the identity map, to
obtain a piecewise linearc 7 (S') such thatr(p) = p for everyp € K(f). As
far as non-critical points are concerned, following thegfrof Lemma 2.3, for
everyp € SH\K(f), 7(p) is defined as that point & such that, ifp € e(p', p”) €
E(Tr), with £(p) = (1= Ap)F(p) +Apf(p"), Ap € [0,1], thent(p) € e(p/, p)
with g(7(p)) = (1—Ap)a(p’) +Apg(p”). Therefore, by substituting té(p) and
g(7(p)) the above expressions, we see theg mex —g(t(p))| = pgﬁ)ﬁ)| f(p)—
pe

g,(p)| =c(T).

LetT be of type (D) deletingu, 2 € V(I't), the edges(p1,d1), €(du, 02), €(de; P2),
and inserting the edge(ps1, p2). Thus, for everyp € K(f)\{aqs, a2}, f(p) =
g(p). Itis not restrictive to assume thé&fp:) < f(gz) < f(q1) < f(p2). Then

we can define a sequen¢e,) of piecewise linear homeomorphisms 8h ap-
proximating this elementary deformation. Lgi(p) = p for every everyp €
V([¢)\{a1,02} =V (I'y) andn € N. Moreover, letq be the point ofe(py, p2) €
E(Tg) such thag(q) = MJ(Q” (such a poing exists becausg(p1) = f(p1) <
f(o) < f(o1) < f(p2) = g(p2) and it is unique because we are assuming that
no critical points ofg occur in the considered arc). Let us fix a positive real

@

~

numberc < min{g(p2) — 9(q),9(d) —o(p1)}. For everyn € N, let us define
Tn(qu) (resp. Tn(gp)) as the only point or$! belonging to the arc with endpoints
p1,d (resp. G, pz) contained ine(ps, p2), such thag(tn(q1)) = 9(d) — 5 (resp.
9(tn(a2)) = 9(d) + £) as shown in Figure 4. Now, let us linearly extendto

all St in the following way. For everyp € St\ K(f), if p belongs to the arc
with endpointsp’, p” € K(f) not containing any other critical point, and is such
that f(p) = (1—Ap) f(p') +Apf(p”), Ap € [0,1], thenty(p) belongs to the arc
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with endpointsr,(p'), Ta(p”) not containing any other critical point, and is such

thatg(th(p)) = (1—Ap)a(Ta(P’)) + Apa(Tn(p”)). Hence,1, is piecewise linear

for everyn e N, and limmaxf(p) —g(tn(p))| = lim max |f(p) —g(tn(p))| =
N—=pest n—epeV ()

: a1 (@)

lim max{ f(a1) —9(Tn(dn)), F(d2) —9(tn(A2))} = (A1) —9(A) | = ——— =

c(T).

02

)

p1 Tn(P1) = P1

FIGURE 4. The construction of the homomorphism as described in step (2) of the
proof of Theorem 4.1. The as{p1,01) (e(d1, 02), ande(dz, p2), respectively) is piecewise

linearly taken to the arc having(p1), Tn(da) (Tn(da), Tn(d2) and tn(dz), Tn(pP2), respec-
tively) as endpoints.

(3) LetT be of type (B) deleting(p1, p2) € E(I'¢), and inserting two vertices, 0z
and the edges(p1,01), €(01,02), €(dz, p2). Then we can apply the same proof as
(2), by considering the inverse deformatidn? that, by Definition 3.5, is of type
(D) and, by Proposition 3.6, has the same codi .of

Therefore, observing that in (1), the piecewise linearan be clearly replaced by a se-
quence(t,), with T, = 7 for everyn € N, we can assert that, for every elementary defor-
mationT, there exists a sequence of piecewise linear homeomorptasi®, (1,), such
thatc(T) = lim ||[f —goT, > inf ||f —goT||co.

(M) = fim] - gotallco > _inf_f ~got|co
Now, letT = (Ta,...,Tr) € 7((F't, f).(Fg.9)) and prove that, also in this casgT) >

inf_|[f —goT|co. Letus sefli---Ty(Ty,f)= (T, fD), f=10 g=7f". For
Te (S \

i=1,...,r,let (rr(,”)n be a sequence of piecewise linear homeomorphisn® &r which
it holds thatc(T;) = lim || £0-1 — £0) o 1)||co, and let(ry”),, be the constant sequence
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such thatr,ﬁo) =Id for everyn € N. Then

r

r-1
= ) = i 0 _ 1) 5D ; (i) _ £(i+1) _ (i+1)
eT) = 3ol = Jm 10— 1@ orlcs + 5 im0~ 10D ot

= lim |1 — W o 1{Y 0

n—oo

r—1 o _ . ,
+ ZAim D00, orl® — Do i ™ o1l 0 0 1o
i: — 00

\%

lim [ £© — 0o ot Yo 0rl?|o> inf |f—goT|co,
)

r—eo Tes(
where the third equality is obtained by observing that

fo r,ﬁi) on«oTrgo) — £(i+2) oTéHl) o'[r(1i> o-~~oTr(10) = (f(i) — i+, Tr(1i+l)) oTrgi) on-oTr(,O)

for everyi € {1,...,r — 1}, and that| - ||o is invariant under re-parameterization; the first
inequality is consequent to the triangular inequality. O

Corollary 4.2. Ifd((T't,f),(Tg,g)) =0then('s, f) = (Tg,9).
Proof. From Theorem 4.1d((T', f ), (Fg,9,)) = 0 implies that ir(nél)”f —goT|lco=0.
TeH
In [7]it has been proved that when/{(xir}f)ﬂ f —goT1|lco =0, with X, Y two closed curves
teH (X,

of class at least?, a homeomorphisrm € .7 (X,Y) exists such that = goT. Therefore,
the claim follows from Proposition 2.4. |

Proof of Theorem 3.9The positive definiteness af has been proved in Corollary 4.2;
the symmetry is a consequence of Proposition 3.6; the wilangnequality can be easily
verified in the standard way. |

Now we describe two simple examples showing how it is possitompute the editing
distance between two labelled Reeb graghs, f‘), (g, g‘), by exploiting the knowledge

of the natural pseudo-distance value between the assbgiaies(St, f), (S',g). In partic-
ular, Example 1 provides a situation in which the infimum amsdr all the deformations
transforming('s, f ) into (g, g)) is actually a minimum. In Example 2 this infimum is
obtained by applying a passage to the limit.

Example 1. Let us consider the two pai(§, ), (St,g) depicted in Figure 5, wit,g €
Z9. We now show thatl((T"¢, f ),(Fg,9)) = 3(f(qa) — f(p1)). Indeed, in this case, the
natural pseudo-distance betwe&h, f) and(S!, g) is equal to%(f(ql) —f(p1)) (cf. [13]).
Therefore, by Theorem 4.1, it follows that("t, f ), (Fg.9))) > 3(f(qu) — f(p1)). Onthe
other hand, the deformatidnof type (D) that deletes the vertices, g1 € V(¢ ), the edges
e(p,d1),e(d, P1),€(P1,0) and inserts the edggp, q) transformgT¢, f ) into (Mg, g ) with

costc(T) = 3(f(ar) — f(ps)). Henced((T't, 1)), (g,9)) = 5(f(dz) — f(pa)).

Example 2. Let us consider now the two pai(§', f), (S',g) illustrated in Figure 6. Let
f(g1) — f(p1) = f(gz) — f(p2) = a Then, clearly, "(gl)ﬂf —goTl|jco=3. Letus show
eH

that the editing distance betwegny, f ) and (g, g ) is 8, t00. For every < € < §, we

can apply to(T" ¢, f‘) a deformation of type (R), that relabgbs, p2,q1,02 in such a way
that f(p;) is increased of — ¢, and f(q) is decreased of — ¢ for i = 1,2, composed
with two deformations of type (D) that delef® with q;, i = 1,2. Thus, since the total
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00

FIGURE 5. The pairs considered in Example 1. In this caél s, f ), (Cg, g
Telnf If = goTlleo = 3(f(a) — f(pv))

40

FIGURE 6. The pairs considered in Example 2. Even in this aiE+, f ) .(Fg,9
inf ||f—goTl|jco= —f
re.)’/f(sl)H gotllco = 3(f(an) — f(pr))

cost is equal td — & + 2¢, by the arbitrariness df, it holds thatd((T'+, f ), (Fg.9))) <
Applying Theorem 4.1, we deduce thdit(T" ¢, f‘), (Fg,g‘)) =3

< a
2"

5. LOCAL STABILITY

This section is intended to show that labelled Reeb grapletoséd curves are stable
under small function perturbations with respect to ouriegitlistance (see Theorem 5.5).
The main tool we will use is provided by Theorem 5.3, that eesuhe stability of sim-
ple Morse function critical values. This latter result candeduced by the homological
properties of the lower level sets of a simple Morse functfoan a manifold.#, and
its validity does not depend on the dimension4f. Therefore, it will be given for any
smooth compact manifold without boundary.

For everyf € & (.#,R), and for everya € R, let us denote by 2 the lower level set
f~1(—w,a = {pec.#: f(p) <a}. Let us recall the existing link between the topology of
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a pair of lower level set§f®, £3), with a,b € R, a < b, regular values of , and the critical
points of f lying betweera andb. The following statements hold (cf. [19]):

(St. 1) If the interval f ~%([a, b]) contains no critical points, theff is a deformation re-
tract of f2, so that the inclusion maf? — f is a homotopy equivalence.

(St. 2) If f~%([a,b]) contains exactly one critical point of indéx then, denoting by
the homology coefficient group, it holds that

b . [ G ifk=FK
Hi (15 1 )_{ 0, otherwise

In the remainder of this section we requir¢o be a simple Morse function. Accordingly,
it makes sense to use the terminolagitical value of index Ko indicate a critical value
that is the image of a critical point of inddx

Lemma5.1. Let f € .#9 c .#(.#,R), and let ab € R, a< b, be regular values of f. If
there existk € Z such that H( P, f3) # 0, then[a, b] contains at least one critical value
of indexk.

Proof. From(St. 1) the absence of critical values i b] implies that the homomorphism
induced by inclusiony : Hy(f3) — Hy(fP) is an isomorphism for eack € Z. Conse-
quently, by using the long exact sequence of the pair:

)

i j 17 [
s H(F3) =55 Hi(F9) 255 H (0, £2) 29 Hi 1 (F2) 25 Hi g () — -

it is easily seen that, for evelyc Z, the surjectivity ofiy and the injectivity ofi,_; imply
the triviality of Hg(f®, f2). This proves that if there existse Z such thatHg(fP, f2)
0, then[a,b] contains at least one critical value 6f That the index of at least one of
the critical values off contained infa, b] is exactlyk is consequent to the sub-additivity
property of the rank of the relative homology groups an¢Bib 2) In fact, letcy, ..., cm be
the critical values off belonging to[a,b], and letsp, ...,Ssnw bem+ 1 regular values such
thata=s9<Cc1 <1< < ... <Sm_1 < Cm< Sn=Dh. Since it holds that raer‘;(fb, fa) <

m
3 rankHg(fS, £S-1), and by hypothesis rahig(f°, f2) > 1, there exists at least one index

i=1
i € {1,...,m} such thatH(fS, fS-1) £ 0. Now, applying(St. 2)with a replaced bys_1
andb replaced bys, we deduce that; is a critical value off of indexk. O

The above statemen{St. 1-2) Lemma 5.1, together with the following lemma, that is
a reformulation of Lemma 4.1 in [17], provide the tools fooying the stability of critical
values under small function perturbations (Theorem 5.3).

Lemma5.2. Let X, X2, X3, X{, X5, X5 be topological spaces such that X X, C X3 C X; C
X5 C X35. Let H(X3,X1) = 0, Hy(X5,X{) = 0 for every ke Z. Then the homomorphism
induced by inclusion kX[, X1) — Hk(X}, X2) is injective for every k Z.

Theorem 5.3(Stability of critical values) Let f € .#° ¢ .# (.#,R) and let ¢ be a critical
value of index of f. Then there exists a real numh&(f,c) > 0 such that each g .#°
verifying || f — gl|co < 8, 0< & < &(f,c), admits at least one critical value of indéxin
[c—9d,c+9].

Proof. Since f is Morse, we can choose a real numiggif,c) > 0 such thatjc—3-
o(f,c),c+3-9(f,c)] does not contain any critical value éfbesidesc. Let 0< 6 <
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o(f,c), and letg be a simple Morse function such that — g||co < 0. If d =0, then the
claim immediately follows. Led > 0. Then, for everyn € N,

fo-o- A C gc—5~%1 C fC-0/nC fo+d/n gc+6'%1 C foro- AL

Since[c— &+ 2L c—&/n] and[c+ 5/n,c+ & - 24] do not contain any critical value

of f for everyn € N, both Hy (f6=9/1 £¢=0- %52y andH, (66 %5+ | £¢+3/n) are trivial for
everyk € Z, andn € N. Consequently, from Lemma 5.2, the homomorphism induced
by inclusionHy(f6+9/n, fe=8 %)  H, (g8 ", g¢5 ") is injective for eaclk € Z,

andn € N. Moreover, since, for everg € N, [c— - 2™t ¢+ §/n] containsc, that is

a critical value of indexk of f, from (St. 2) it holds thatH(f¢+0/n, f¢-&%:%) £ 0 for
everyn € N. This fact, together with the injectivity of the above mamplies that also
Hi (g5 " o= ) £ 0 for everyn € N. So, by Lemma 5.1, for every € N, there
exists at least one critical valwg of indexk of g with ¢, € (c— & 2 c+5- ™). By
contradiction, let us suppose thiat— d,c -+ 8] contains no critical values of indek of
0. Then, since is Morse, there would exist a sufficiently small real numbesr 0 such
that(c— 0 — &,c+ &+ €) does not contain critical values of indkxf g either, giving an
absurd. O

We now prove the local stability of labelled Reeb graphs oetl curves. We need a
lemma that holds for manifolds of arbitrary dimension. Thabgl stability will be exposed
in the next section.

Lemma 5.4. Let f € #° c .#(.#,R). Then there exists a positive real numlif)
such that, for every, 0 < & < 5(f), and for every g .#°, with || f — g||c2 < 3, an edge
and vertices order preserving bijectian: V (I't) — V(Ig) exists for which max)| f(v)—

veV (¢
6 (OW)] <.

Proof. Let p,..., pn be the critical points of , andcy, . .., ¢, the respective critical values,
with ¢ < ¢;1 fori=1...,n—1. Since.Z#° is open in.Z (.#,R), endowed with the
C? topology, there always exists a sufficiently sm@(lf) > 0, such that the closed ball
with centerf and radiusd(f), Bo(f,d(f)), is contained in#°. Moreover,5(f) can be
chosen so small that, for eveiy=1,...,n— 1, the intervalsc; — 6(f),ci + o(f)] and
[Ciy1—O(F),cip1+ (1)) are disjoint.

Fixed such a(f), for every real numbed, with 0 < & < &(f), and for everyg € .7°
such that||f —g||cz < &, f andg belong to the same arcwise connected component of
70 endowed with th&€> topology, and, therefore, are topologically equivalemictions.
Consequently, there exists an edge and vertices orderrpirggdijectiond : V(['¢) —
V(I'g) (see Subsection 1.4). Let us prove ti¥is such thagevn(wrz?)q f (V) =g (P(v))] <.

Since f andg are topologically equivalent, it follows thathas exactlyn critical points,
Py,..., Ph. Letch =g(py),...,ch =9(pn). We can assume < ¢ 4, fori=1,....n—1.
The assumptiod| f —g||c2 < & implies that| f —g||co < &. Therefore, by the previous
Theorem 5.3, for every critical valug of f, there exists at least one critical valuegf
of the same index of; belonging to[c; — J,¢; + d]. Moreover, sincgc — J,¢ + d] N
[Cit1— 9,Cit1+ 0] = 0 for everyi = 1,...,n— 1, it follows thatc] € [¢i — 8,¢; + 9] for
everyi = 1,...,n. Hence, sinc& preserves the order of the vertices, necesséxily;) =
P, yielding that _max|f(v) — g (®(v))] = max |f (pi) —g (®(p))l = max|ci — G <

0. d
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Theorem 5.5(Local stability) Let f € .#° c .#(SHR). Then there exists a positive real
numberd( f) such that, for everg, 0< & < §(f), and for every g .#°, with || f —g||cz <
9, itholds that d('t, f ),(Tg,9))) < O.

Proof. By Lemma 5.4, an edge and vertices order preserving bijedtioV (I's) — V(I'g)
exists for which \r/rg@)q f (v) —g/(®(v))| < 8. Necessarilyd takes minima into minima
ve f

and maxima into maxima. Therefor@,¢,g o®) =T(I', f ), with T an elementary de-
formation of type (R), relabelling vertices ™(I"¢), having costc(T) = rp/garx)\ f.(v)—
ve f

g,(®(v))| < 8. Moreover, let us observe théf ,g o @) is isomorphic to(l'g,g ) as la-
belled Reeb graph (see Definition 2.1). Thd§(I'+, f),(T'g,9))) = d((Ft,f), (Tt g 0
(]

D)) = inf c(T) <9o.
) Teﬂ((rf,f‘),(rgﬁg‘)) ()<

6. GLOBAL STABILITY

This section is devoted to proving that Reeb graphs of clasedes are stable under
arbitrary function perturbations. More precisely, it wié shown that arbitrary changes
in simple Morse functions imply smaller changes in the editilistance between Reeb
graphs. The proof is by steps: the following Propositionshdws such a stability property
when the functions defined @1 belong to the same arcwise connected componefbf
Proposition 6.2 proves the same result in the case thatrikarliconvex combination of
two simple Morse functions traverses the stratdim at most in one point; Theorem 6.3
extends the result to two arbitrary functions#?.

Proposition 6.1. Let f,g € .#° and let us consider the path: 0, 1] — .7 (S, R) defined
by h(A) = (1-A)f+Ag. Ifh(A) € Z° for everyA € [0,1], then d(T'¢, f),(Mg.9)) <
[f -9l

Proof. Letd(h(A)) > 0 be the fixed real number playing the same rol&(df) in Theorem
5.5, after replacing by h(A). For conciseness, let us denote it®A ), and||f —g||2
by a. If a=0, the claim trivially follows. Ifa > 0O, letC be the open covering db, 1]
constituted of open intervalg = ()\ — %,/\ + %) Let C' be a finite minimal (i.e.

such that, for every, I, ¢ U I,\J.) sub-covering of, with A1 < A2 < ... < A, the middle
j#i

points of its intervals. Sinc€’ is minimal, for everyi € {1,...,n—1}, 1} N Iy, IS non-
empty. This implies that

Oh)  Shiza) _ max{O(A), 6(Aira)}

(6.1) A1 — A < 2a + %a a
Moreover, by the definition dfi and the linearity of derivatives, it can be deduced that
(6.2) Ih(Air1) —h(Ai)llcz = (Aigr—Ai) - I = dllce-

Now, substituting (6.1) in (6.2), we obtain
max{ d(Aj), O(A;
IhAi0) ~ e < MHERDCORD] gy, — ma(s(h), 50h0))

Let (Th(a;),N(Aj),) be the labelled Reeb graphs associated wthh(A)), j=1,...,n.
Leti e {1,...,n—1}. If max{d(Ai),d(Ai+1)} = 8(A;), then using Theorem 5.5, with
replaced byn(A;), g by h(Ai11) andd by ||h(Ai+1) —h(Ai)||cz. it holds that

(6.3) d((Phox)> h(A))); (Thiaig): h(Aiva))) < [M(Aiga) = (A7) |-
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The same inequality holds when n{@(A;),d(Ai+1)} = d(Ai+1), as can be analogously
checked.
Now, settingAg = 0, Ap 1 = 1, it can be verified that (6.3) also holds foe 0O,n.

Consequently, sindés = yyy), andlg =Ty, ,), We have

d((F's, f),(Mg,9)) < _;d((rh(/\i)»h(/\i)\)a (Phixi,),h(Aiga)))) < Zjllh(f\m) —h(Ai)llc2

= Z)()\H—l—/\i) Nt —dllcz = [If —dllc2,

where the first inequality is due to the triangular ineqyatithe second one to (6.3), the
n
first equality holds because of (6.2), the second one becfiuge.1 — Aj) = 1. O
i=0

Proposition 6.2. Let f,g € .#° and let us consider the path:h0,1] — ﬁ(Si, R) defined
by hA) = (1-A)f+Ag. Ifh(A) € FOfor everyA € [0,1]\ {2}, withO< A < 1,and h
transversely intersectg* at A, then d(T'+, f), (Tg,9))) < || —9lce-

Proof. We begin proving the following claim.
Claim. For everyd > 0 there exist two real numbeds,A” € [0,1], with A’ < A < A”,
such that:l((l'h<A/), h()\/)‘), (rh(/\u),h(/\//)‘)) < 9.

To prove this claim, let us first assume téh ) belongs to%2. To simplify the no-
tation, we denotdn(X) simply byh. Letp be the sole degenerate critical point for It
is well known that there exists a suitable local coordingttesnx aroundp in which the
canonical expression df is h = h(p) +x3 (see Subsection 1.3 and Figurgd) with h
replaced byf).

Let us take a smooth functian : S' — R whose support is contained in the coordinate
chart aroundp in which h = h(p) 4 x3; moreover, let us assume thatis equal to 1 in a
neighborhood oy, and decreases moving from Let us consider the family of smooth
functionsh; obtained by locally modifyindi nearp as follows: by = h+t-w-x. There
existst > 0 sufficiently small such thafi) for 0 <t <, h has no critical points in the
support ofw and is equal td everywhere else (see Figurgd) with h; replaced byf),
and(ii) for —t <t < 0, hy has exactly two critical points in the support@fwhose values
difference tends to vanish a$ends to 0, andi is equal tch everywhere else (see [6] and
Figure 1(a) with b replaced byfy).

Sinceh is a universal deformation di = h(A), andh intersect.Z?! transversely at
A, either the map&(A) with A < A are topologically equivalent tby with t > 0 or to
hy with t < O (cf. [6, 18, 23]). Analogously for the maggA) with A > A. Let us
assume thali(A) is topologically equivalent téx with t < 0 whenA < A, while h(A) is
topologically equivalent tdy with t > 0 whenA > A. Hence, for every > 0, there exist
A with 0< A’ < A, andA”, with A < A” < 1, such thah(A’) andh(A”) have the same
critical points, with the same values, except for two catipoints ofh(A’), whose values
difference is smaller thad, that are non-critical fon(A”). Therefore(I'n(x),h(A’),) can
be transformed int@"n ), h()\”)‘) by an elementary deformation of type (D) whose cost
is not greater thad. In the case wheh(A) is topologically equivalent tdy with t > 0
whenA < A, whileh(A) is topologically equivalent th; witht < 0 whenA > A, the claim
can be proved similarly, applying an elementary defornmatibtype (B).
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Let us now prove the claim whem= h(A) belongs toﬁg. Let us denote by and

q the critical points ofh such thath(p) = h(g). Sincep is non-degenerate there exists
a suitable local coordinate systemaroundp in which the canonical expression bfis
h=h(p) +x? (see Figure 1b) with h replaced byf). Let us takew as before, whose
support is contained in such a coordinate chart. Let uslipoabdify h nearp as follows:
h =h+t-w. There existd > 0 sufficiently small such that fot| <, h has exactly
the same critical points ds As for critical values, they are the same as well, apart from
the value taken ap: h(p) < h(p), for —t <t < 0 (see Figure 1b) with h; replaced by
f1), while hy(p) > h(p), for 0 < t <t (see Figure Ib) with h replaced byf,), andh(p)
tends toh(p) ast tends to O (cf. [6]). Sincéy is a universal deformation df = h(A),
andh intersectZ* transversely ak, we deduce that for eve§ > 0 there exisiA’, with
0< A <AandA”, with A < A” <1, such thatpx),h(A"),) can be transformed into
(Thamy, (A ”)‘) by an elementary deformation of type (R) whose cost is naitgrehan
0. Therefore the initial claim is proved.

Let us now estimatel((I't, f),(Tg,9))). By the claim, for everyd > 0, there exist
0< A’ < A" < 1 such that, applying the triangular inequality,

d((F'+,1).(Tg,9)) < d((Ts. %), (Thary, h(A))) +d((Freary, h(A'),), (Frary, h(A™),))
+d((Fnary,h(A") ), (Fg,9))
< d((Ft, ), (Fhary,h(A), ) +d((Fram, h(A”), ), (Tg,g,)) + 6.
By Proposition 6.1,
d((Tt, ), (T, h(A))) < [I1f =h(A) ]l = A" I = gllez,
and
d((Thamy,h(A")),(Fg,9)) < [N(A") —gllce = (1= A") - [|f — g c2.
Hence,d((T ¢, ) (Fg,g ) < |If —g||cz + 0, yielding the conclusion by the arbitrariness
of . O

Theorem 6.3(Global stability) Let f,gc .#°. Thend(T's, f), (Fg.9)) < If —dllce-

Proof. For every sufficiently smal > 0 such thaB,(f,5),Bz(g,8) C .#°, there exist

f e By(f,d) andg € By(g, 8) such that the path: [0,1] — . (SLR), with h(A) = (1—
)\)fA+/\§, belongs toZ° for every A € [0,1], except for at most a finite numberof
values O< iy < Uz < ... < ln < 1 at whichh transversely intersect&®. f n=0(n=1
respectively), then the claim immediately follows from pwosition 6.1 (Proposition 6.2,
respectively). IIn> 1, let0< A1 <A < ... < App_1 < 1, with Ay 1= fori=1,....n
Thenh(Ay_1) € Flfori=1,...,n,h(Ay) € #%fori=1,...,n—1. SetAp = 0 so that
f= h(Ap), andAz, = 1 so that§ = h(A2n) (a schematization of this path can be visualized
in Figure 7). Then, by Proposition 6.2, we have

d((Mhag)>N(A2i),), (Fh(ag,), h(A2i2) ) < [[h(A2i) = h(Azi42)]|c2
for everyi =0,...,n— 1. Therefore

1
d((rfv |) (rgvg\)) < ‘;d((rh(}\zi),h(/\z)‘),(rh()\Zi+2),h()\2i+2)‘))

IN

n—-1
Eollh(/\zi) —h(Azi12)llcz < [If =Gl ca-
=
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Then, recalling thatf € By(f,3) means| f — fllcz < &, and By(f,5) ¢ F° implies
that(1—A)f+A f e Z0 for everyA € [0,1], we can apply Proposition 6.1 to state that

d((F+,f),(Ts 1)) < 8. Itis analogous fog andg. Thus, from the triangular inequality,
we have

d((F1.1),(Mg,8)) < d((Tr.£). (T, ) +d((T, 1), (M6,8)) +d(Tg,8). (Tg.0)
< 25+ -l

Now, since by the triangular inequalityf — §llcz < || — f[lc2 + || f — 9llc2 + |9 — 6llc2,
with || f — f|c2 < 3, and||g— |2 < &, it follows thatd((I't, f ), (Tg,9))) <4+ || f — g|ce-
Finally, because of the arbitrarinessifwe can let tend to zero and obtain the claim]

jZO 90 90 L@o yo
W w w w w R
f= h()\o) h(Az) h )\4) h()\Zn—Z) h(/\Zn) =0
[ @ @ @ @ o— —® @ @
h(ﬁl) h(Lle) h(ilfs) h(an-ﬁ h(Llln)
h(A1) h(As) h(As) h(A2n-3) h(Aon-1)
m m m m m
yl ﬁl g;l 91 d&;l

FIGURE 7. The linear path used in the proof of Theorem 6.3.

7. DISCUSSION

In this paper, we have considered Reeb graphs of curves aadhawn that they stably
represent topological properties of smooth functions.ciBedy, we have constructed an
editing distance between Reeb graphs of closed curves @udaith smooth functions
f andg, that is bounded from below by the natural pseudo-distaeteden(St, f) and
(St,g), and from above by th€?-norm of f —g.

This paper is meant as a first step toward the study of stabfliReeb graphs of sur-
faces. While the general technique we use to prove our maintyes well as many
intermediate results, could be easily generalized to seasfathe definition of the editing
distance would need to be appropriately modified. This meguis to classify the possible
degeneracies of Reeb graphs of surfaces. Moreover, ouf girttoe metric properties of
the editing distance exploits some particular propertfesuoves that are no longer valid
for surfaces.

Furthermore, other shape descriptors consisting of graphstructed out of Morse
theory, such as the Morse Connection Graph introduced imrfigl] further developed in
[1], could possibly benefit of some of the results proved ia gaper.

However, some questions remain unanswered also in the tageves. In the examples
shown in this paper, the editing distance coincides witmgteral pseudo-distance. Is this
always the case? Moreover, looking at the analogous regsudt®d in [8, 10] about the
stability of persistent homology groups, another shaperggsr used both in computer
vision and computer graphics for shape comparison, we mégertbat theC-norm rather
than theC?-norm is used to evaluate function changes. So another apestign, strictly
related to the previous one, is whether it would be possiblienprove our result in this
sense. Other open questions are concerned with applisaifahe Main Result (Theorem
6.3) to measure shape dissimilarity coping well with noisyad On one hand, the result



22 B. DI FABIO AND C. LANDI

ensures the stability of Reeb graphs against noise, whiléhe other, we may wonder
how likely it is that noise encountered in real data is smahwespect to th&€2-norm.
Indeed, it is easy to conceive examples where perturbati@icould be seen as noise do
not correspond to a small value of tB&-norm. For example, the functions represented in
Figure 8 belong to a sequence of functigrg) all having the sam€&2-norm although they
tend to 0 with respect to tHe®-norm. However, one could argue that in a discrete setting,
at a fixed resolution, sequences of functions as in Figuren8atabe found. Moreover,
this problem would be overcome if the editing distance ddies with the natural pseudo-
distance.

1] f,

120

"1 \/ k
0 12 1 3/4 5

FIGURE 8. The graphs of three functions having the sa@Aenorm.
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