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Abstract common scenario, however, is to have two or more function

defined on the same shape, carrying information on differ-
This paper advises the use kfdimensional size func- entfeatures of the phenomenon under study. Examples arise

tions for comparison and retrieval in the context of mul- inthe context of computational biology, in medical environ
tidimensional shapes, where by shape we mean somethingnents, as well as in scientific simulations of natural phe-
in two or higher dimensions having a visual appearance. nomena. Therefore, a great challenge is to develop and de-
The attractive feature df-dimensional size functionsis that fine tools to extract knowledge from high-dimensional data,
they allow to readily establish a similarity measure betwwee by means of the concurrent analysis of different properties
shapes of arbitrary dimension, taking into account differ- conveyed by different real functions.
ent properties expressed by a multivalued real function de-  |n this context, the aim of this paper is to illustrate how
fined on the shape. This task is achieved through a par-recent results in Multidimensional Size Theory [6] can be
ticular projection ofk-dimensional size functions into the effectively used to analyze and compare 3D digital shapes
1-dimensional case. Therefore, previous results on the sta (represented by surface or volume models) equipped by
bility for matching purposes become applicable to a wider multivalued functions instead of scalar functions. In Nult
range of data. We outline the potential of our approachin a dimensional Size Theory, indeed, the approach to shape dis-
series of experiments. crimination and comparison is based on the use of a mathe-

matical descriptor named-dimensional size functiormhe

idea is to compare shape properties that are described by
1. Introduction functions taking values ifR*, called k-dimensional mea-

suring functionsdefined on topological spaces associated

Shape comparison plays a fundamental role in shapet© the objects to be studied.
recognition, classification and retrieval, which are very  Although the special case dtdimensional size func-
lively research topics for the disciplines of Cognitive Sci  tions has already revealed to be useful when applied to
ence, Pattern Recognition, Computer Vision and Computerthe problem of comparing images [7] or 3D-models rep-
Graphics. Shape models carry a high value with them, andresented by closed surfaces [2], in this paper we show that
search engines able to match, classify and retrieve multidi k-dimensional size functions show a higher discriminatory
mensional visual media would be useful to speed-up contentpower, especially when the dimension of the objects to be
design, processing and re-use. Keyword-based annotation istudied increase.
not sufficient to achieve the necessary capability of resmur The rest of the paper is organized as follows. After intro-
exploration for digital shapes. Therefore, a variety oflmet  ducing size functions and briefly discussing their propsrti
ods has been proposed in the literature to tackle the problenin the 1-dimensional case in Sec. 2, we summarize the defi-
of content-basedigital shape analysis and retrieval. nition of thek-dimensional size functions and how they can

Recently, there has been an increasing interest toward$e reduced to the 1-dimensional case (Sec. 3). Computa-
geometrical-topological methods for shape comparison,tional aspects related to the computatiorkedimensional
whose main idea is to perform a topological exploration of size functions are proposed in Sec. 4. Sec. 5 shows how
the shape according to some quantitative geometric prop-the effective application to different kind of shapes ftria
erties provided by a real function defined on the shapegle meshes and 3D images) makes this framework flexible
[12, 5, 4, 3]. The real function plays the role oflens and independent of the shape representation. Conclusions
through which we look at the properties of the shape. A and suggestions on future developments end the paper.



2. Background: 1-dimensional size functions these regions the value 6 is constant. In the con-
g M)
sidered example, the values fy, ) in every triangular

This particular case ofi-dimensional size functions region is equal to the numbers displayed. Thanks to this
(1SF’s) has been extensively studied in recent past yearsparticular structure, eactSF can be seen as a linear com-
both from the theoretical point of view [9, 12, 13, 15, 18] bination (with natural numbers as coefficients) of charac-
and the computational one [2, 7, 17, 19], showing quite a teristic functions of triangles. Hence, by taking the forma
lot of interesting properties that turn out to be useful in ou Series of vertices associated to their right angles, cabed
approach to the multidimensional problem. nerpointsfor the bounded triangles amrnerlinesfor the

Let us consider a paitM, ¢), whereM is a non-empty, unbounded ones, we get a simple and compact representa-
compact, locally connected Hausdorff space endowed withtion.
a finite number of connected components, and M — Each distance between formal series naturally produces
R is a continuous function. Every such a pair is called a @ distance between 1SF's: The idea is to compare
size pair while each functiorp is called a(1-dimensional) ~ dimensional size functions by measuring the cost of trans-
measuring functioand its purpose is to encode quantitative Porting the cornerpoints and cornerlines df-dimensional
properties of the shap#. size function to those of the other one. Two 1SF's repre-

Given a size paitM, ¢), the(1-dimensional) size func- sented by formal series can be compared by using different
tion £ : {(z,y) € R? : 2 < y} — N can be easily metrics, e.g., the matching distance or the Hausdorff metri
defined by setting v, (z, ) equal to the number of con- For details and basic notions abolitdimensional) size
nected components of the lower level get, = {P ¢ M :  theorysee|[9, 12, 13, 15, 18].
©(P) < y}, containing at least one point 8f(,,..

3. Multidimensional Size Functions

This Section is devoted to the introduction of prelimi-
nary definitions generalizing the concept of 1SF’s to mea-
suring functions taking values iR”*, and to the presenta-
tion of some recent results abdwdimensional size func-
tions (kSF's) [6]. In particular, we will show how a suitable
change of variables permits to reduce multidimensional siz
functions to thel-dimensional case, making them suitable
for computation and use in concrete applications.

() (b)

Figure 1. A size pair and the associated 1- 3.1. Preliminary definitions

dimensional size function. . _ ) .
We shall now generalize the definitions given in the pre-

vious Section for the 1-dimensional case, and cadize

Figure 1(left) shows an example of a size p@it, v), pair any pair(M, @), where M is a non-empty, compact,
whereM is a closed curve and the chosen measuring func-locally connected Hausdorff space endowed with a finite
tion ¢ is defined as the Euclidean distance from the point number of connected components, afd M — R* is
P. Figure 1(right) represents tHedimensional size func-  a continuous function. The functiof is said to be a-
tion associated t§M, ¢). Sinceyp takes value irR, the dimensional measuring functipand can be seen like a de-
domainA™ of /(. is the subset of the real plane defined scriptor of those features that are considered to be refevan
as{(z,y) € R? : x < y}. Two of the most interesting prop-  in comparing(M, @) with other size pairs.
erties ofl-dimensional size functions are their resistanceto  The following relations< and < are defined irR”: for
noise (useful especially in applications) and their modula & = (x1,...,z%) andy = (y1,. .., yx), we shall sayf < ¢
ity: in particular, 1SF's inherit their invariance propeg (resp. & < ¢) if and only if z; < y; (resp. x; < y;) for
directly from the chosen measuring functions. As an exam-every index = 1, ..., k. According to these notations, for
ple, we observe that it would be possible to apply rotations everyy € R* consider the seM(g < i) = {P € M :
aroundP to the closed curve, being sure that no changesy;(P) <y;, i =1,...,k}.
occurs in the relateti-dimensional size function. In this setting, thé:-dimensional size functicof the size

As can be seen in Figure 1, 1SF's present a typical struc-pair (M, @) is the function/ v,z : {(Z,7) € RF x RF :
ture: At is divided by solid lines, representing the discon- # < i} — N taking each poin{Z, 7) of the domain into
tinuity points of thel-dimensional size function, into trian-  the number of the connected componentsut(g < )
gular regions (that may be bounded or unbounded). In all containing at least one point ¢f{(g < 7).



3.2 Reduction to the 1-dimensional case Denoting by d(é( 14 7 )) the (matching)

M"F(?E))’ (N’F:Lbis)
) ) ) ) . ) distance [9] between thé-dimensional size functions

When dealing W|thk—d|mens_|onal size functions, we ¢ s _and/ induced by the related repre-
have to face some problems: (i) the analogues for corner- M5 W F )
points and cornerlines (see Section 2) seem not to existsentations by formal series, the distance between/two
meaning that we are not able to represent kSF's by for- dimensional size function§ 1), £, 5y can be defined
mal series; (ii) a direct approach to the multidimensional as
case implies working in subsets Bf x R*: In this case,
the absence of a compact representatiorkfdimensional D(lcmay b)) =
size functions involves great efforts from a computational sup min ;- d(f(M,Fﬂ >’£(N = )).
point of view. All these problems can be by-passed by (TB)eAdmy, "=k (0 TR
means of a suitable change of variables, introduced in [6],
that allows us to reducé-dimensional size functions to
the 1-dimensional case. Indeed, it has been demonstrate
that there exists a parameterized family of half-planes in ; » ) ) o
R* % R¥ such that the restriction 6f 1. to each of these tween l:c—dlmensuonal_ size function, which is computable
planes can be seen as a particular 1-dimensional size func@nd suitable for applications.

If we choose a non-empty and finite subgde€ Admy,
d’;md we substitutalp(ﬁg)eAdmk with max ;g - 4 in the def-
inition of D(¢( a4, ) % J)), then we obtain a distance be-

tion.
Let (M, @) be a size pair, withs = (¢1,...,0k) : 4. Computational aspects
M — RF. We shall calladmissible pairany pair(i,b) €
R¥ x RF with [ unit vector such that; > 0,7 = 1,....k, From the computational point of view, the reduction of

andzi?:1 b; = 0. The set of all admissible pairs will be k-dimensional size functions to thedimensional case al-
denoted byAdm,. In this setting, consider the foliation of 10wWs us to use the existing framework for computing 1SF'’s.

the open seAt = {(Z,7) € R* x R¥ : & < i} given by In this discrete setting, the counterpart of a size painismi
the parameterized family of half-planés ;5 } 5 c am, by asize graph(G, o), whereG = (V(G), E(G)) is afinite
defined by the parametric equations: graph, withV(G) and E(G) the set of vertices and edges
respectively, and : V(G) — R is a measuring function
F—sith labeling the nodes of the graph [8].
TRV In this paper, we deal with models represented by trian-
Y gle meshes and black-and-white voxel images. In the first

case, the size graph is made of the vertices and the edges of
the triangle mesh. In the latter cad3é(G) corresponds to
the image voxels an#(G) represents the 18-neighborhood

Theorem 1. Let (i.b) be an admissible pair, and’?. :  connectivity.

with s, ¢t € R, s < t. Under these assumptions, in [6] the
following result has been proved:

M — R be defined by setting (t.5) Once the size graph has been built, the computational
complexity for computings-dimensional size functions on
. ©i(P) — b a single half-plane of a given foliation @(nlogn + m -
Eip(P) = max, {T} a(2m + n,n)), wheren andm are the number of vertices

and edges in the size graph, respectively,argthe inverse

Then, foreveryz, ij) = (sl+b, ti+b) € 7 the following of the Ackermann function [8]. _
equality holds ¢, v s (7, §) = ¢ . (s 1). _Statlstlcs rel_ated to the time requw_ed to cc_)m_pute the de-
q y (MY M EFLE) scriptor for a single half-plane of a given foliation and the
o storage size are reported in Table 1. The values show that
In other words, Theorem 1 states that a foliationof size functions are fast to compute and easy to store, for both

in half-planes can be given, such that the restriction®f & ector and raster models. These results have been obtained
dimensional size function to these half-planes turns out to y, 4 1 5GH Pentium 4. RAM 1M.

be a classical size function in two scalar variables. This
result implies that each size function, with respect to a
k-dimensional measuring function, can be completely and
compactly described by a parameterized family of discrete

5. Experiments

descriptors: Indeed, we can associate a formal sefjes A The aim C(’jf this Sec:]iofn is to analyze th; potential 0;
: : T the proposed approach for comparing and retrieving 2-
(see Section 2) with each admissible p@jb), with (1) and 3-dimensional data, using both vectorial (i.e., triang

describing the -dimensional size funCtiOﬁ(M,FgE))' meshes) and raster (voxel images) representations.



| Model || [V[ | [E] | Time | Descriptor |
Humanl| 5772 11540 | 0.088s <1k
Human2|| 5775 11546 | 0.089s <1k
Teddy 12831 | 25658 | 0.131s <1k
Plier 14844 | 95699 | 0.256s <1k
Cup 121329| 760717| 0.680s <1k
Chair 30487 | 197759 2.316s <1k

Table 1. Statistics relating the dimension of
a model (in terms of number of vertices and
edges) with the time to compute multidimen-
sional size functions on a single half-plane
of a foliation, and with the storage size of the
descriptor. The first three models are triangle
meshes, the latter three are voxel images.

To perform our tests we have considered the database o[

right, for each model, we represent the size functions ob-
tained from the following pairs of parameter vectols=

(LB L) b = (0,0), 15 = (4, %), b = (0,0) and
I = (=L ¥34L) p0 — (0,0). Vectorsi; correspond to
andilr respectively. Each

2v2 7 2V2
values of the anglé of 75, 7, N

row in the Figure depicts, from left to right, a model and its
1SF associated to the three half-planes defined above.

Observing the first two rows, we can notice how the same
structure in size functions corresponds to the similarédy b
tween shapes, resulting in a high discriminatory power. In-
deed, the size functions of the two human models are each
other very similar, while those of the third object are quite
different.

Notice also how size functions homogeneously evolve
over the half-planes of the foliation. Indeed the shaperinfo
mation conveyed by the multivalued measuring functions
is distributed over the different half-planes. This meduad t
he similarity (or dissimilarity) between objects can balev

280 triangle meshes classified in 14 classes of 20 mOdel%ated by concurrently analyzing different shape propertie

used in [1] and the McGill 3D Shape Benchmark [16] that
offers about 420 volume models, classified in 19 classes.

5.1 Triangle meshes

In order to compare and retrieve the triangle meshes in
the first database [1], we have defined a bi-dimensional
measuring functiof = (¢1, p2). Herey, is a normalized
Euclidean distance from the barycentre of the model, and

In other words, what we expect is that thelimensional
size functions of similar objects are close one to the other
over the whole foliation, thus guaranteeing also robust-
ness with respect to small changes and perturbations of the
model.

5.2 Voxel images

2 is @ normalization of the the averaged geodesic distance As afirst approach, in order to describe the raster models

proposed in [14]. More formally,
| v—B |E‘

v)=1-—
%( ) Y1m

where B denotes the barycentre of the mesh and,
maxy, cv | v; — B |E; and
> 9(v,b;) - area(b;)

1 ;
YoM

pa(v) =

where g represents the geodesic distancf);}
{bo, ..., br} is an almost uniform sampling of the vertices
of the mesharea(b;) is the area of the neighborhoodipf
andyoy = maxy,cv Y, g(vj, b;) - area(b;).

The foliation of R? x R? chosen in our experiments is
the following one:

T1 = scosf +b
T9 = ssinf —b
y1 =tcosf+0b
yo = tsin€ — b.

In Figure 2 we depict the 2-dimensional size functions
obtained combiningy; and ¢, restricted to three dif-
ferent half-planes of the foliation above. From left to

in [16], we have chosen a 3-dimensional measuring func-
tion that respect the grid orientation of the voxels. In othe
words, we discriminate the models with respect to their spa-
tial extent. Thus, denoting = (B,, By, B.) the coordi-
nates of the center of mass of the model, for each voxel
v = (vg,vy,v,) We have considered the 3D measuring
function@ = (4, ¢y, ¢-), Where:

Som:_|vm_Bm|E
py=—|vy— By g
(pz:_|vz_Bz|E-

The aim of Table 2 is to show the stability of the distance
defined in Section 3.2. The distances between six different
objects in our database (two spiders, two cups and two man-
ufactured models) are reported. These results are obtained
usingl = (¥, ¥3 ¥3) andb = (0,0,0) as naive param-

eters to defi3ne a3n hglf-plane Bf x R3. As expected, the
comparison framework satisfies the identity property, guar
anteeing that a model has a null distance from itself. In ad-
dition, the distance between two models in the same class
is significantly smaller than the distance between objects
belonging to different classes (e.g. a spider and a manufac-

tured model).



A O < A

0.00 | 159 | 7.77 | 7.77 | 23.54| 23.99

‘|8
3

159 | 0.00 | 7.77 | 7.77 | 24.71| 25.15

777 | 7.77 | 0.00 | 3.42 | 22.63| 23.08

7.77 | 7.77 | 3.42 | 0.00 | 20.07| 20.51
23.54| 24.71| 22.63| 20.07| 0.00 | 1.25

23.99| 25.15| 23.08| 20.51| 1.25 | 0.00

Table 2. Matching distances between six dif-
ferent models in our database over a sin-
gle plane of a foliation. Computing 420 X
420 comparisons between the models in the
database requires 9.68s.

Figure 3. Top retrieval results when four
single measuring functions and the 3-
Finally, we show how the synergy of more shape prop-  gimensional size function that combines ¢,
erties, analyzed by means of multidimensional measuring @y, and ¢ are used. Results are depicted in
functions, better characterizes the elements of aclags. Fi  eyery column in increasing order of distance
ure 3 exhibits what happens when, ¢, ¢. andg = ¢, from the first model.
are considered, eithes,, ¢,, ¢, alone asl-dimensional
measuring functions (first three columns), or combined in
a 3-dimensional measuring functiog (last column). In
addition, we compare the performance @fwith respect
to a 1-dimensional measuring function which is indepen-
dent of the spatial embedding, namely the distance from the
barycentre ;). In the columns of Figure 3 we rank the
firstly retrieved items in the 3D image database [16], when
the guery is the model on the top row. It can be seen thatRefer ences
the performance of improves the retrieval results, dimin-
ishing the number of false positives. These results show[l] Biasotti, S., Giorgi, D., Marini, S., Spagnuolo, M., and
that thek-dimensional size functions are promising, and we Falcidieno, B.A comparison framework for 3d classifi-
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Moreover, the first experimental results encourage us
to further investigate the application of this modular the-
oretical framework to higher dimensional and also time-
dependent data.
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